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Problems on radiative diffusion in spherically symmetric media and on
radiative equilibrium and radiation hydrodynamics for simple systems.

1. Obscured Active Galactic Nuclei

Figure 1: A snapshot of a 3-D hydro-
dynamical simulation of a dusty torus
of gas formed around an AGN. The
scale of the image box is ∼ 10 par-
secs and the BH is an unresolved
point at the center. Model from
Hopkins and Quataert (2010) ; image
rendered by Nathan Roth.

Accretion onto a supermassive black hole (BH) at the center
of a galaxy can power strong radiation – an active galactic nucleus
(AGN). The BHs powering AGN have masses ∼ 107 − 108 M� and
should radiate mainly in the UV/x-ray. However, in some cases (e.g.,
the Seyfert 2 AGN) strong emission is seen at around ∼ 10 µm. It
is thought that this infrared radiation is due to the absorption and
remission of radiation in dusty gas surrounding the BH. The dusty
region is thought to have a spatial extant of ∼ 1− 10 pc and a shape
like a torus (see figure 1). The origin and properties of AGN dusty
torii are an active area of research, with many efforts to model the
observed IR spectra with radiation transport codes.

In this project, we develop a simple model of obscured AGN.
Although the real systems are clearly aspherical, we’ll solve the sym-
metric analogue – a spherical source surrounded by a spherical enve-
lope.1. We first calculate the temperature of dusty gas being heated 1 Our simple setup may be applicable

in other astrophysical contexts, e.g., a
starburst occurring in a dusty galaxy, a
massive star forming in a dusty cloud,
or a supernova exploding inside a
dusty circumstellar region. One would
just need to change the length and
luminosity scale.

by a central BH. Once the temperature of the gas is known, we can
calculate the spectrum of its infrared emission.

We’ll assume that BH has mass MBH ∼ 107 M� and emits a lumi-
nosity, LBH, equal to it’s (electron-scattering) Eddington luminosity.
We’ll model the source of BH radiation as an isotropically emitting
sphere2 of radius Rin ∼ 10 Swarchzhild radii (∼ 2 AU). Surround- 2 Of course, the emission is actually

coming from the accreting material just
outside the BH, which is presumably
disk-like (not spherical) and does not
emit isotropically. But anyway.

ing the source is a spherical envelope of mainly hydrogen gas with
some dust mixed in. We’ll take the envelope to have a constant den-
sity ρ0 extending from Rin to an outer radius Rout ∼ 10 parsecs (so
Rout � Rin). We’ll assume that radiative heating/cooling dominates
the energy exchange in the envelope, so that (given enough time) the
envelope will come into radiative equilibrium.

The optical depth of the envelope (measured radially, from the
center to the edge) is τ0 ' ρ0κRout, where κ ∼ 10 cm2 g−1 is a typ-
ical infrared opacity of dusty gas3, which we will take to be purely 3 The gas and the dust are typically

tightly collisionally coupled (i.e.,
quickly come into thermal equilibrium
with each other) and so we treat them
as a single fluid. By opacity, we thus
mean the cross-section per unit gram
of dusty gas. Most of the mass of this
fluid is from hydrogen, so the cross-
section of this material is σ ' mpκIR
where mp is the proton mass.

absorptive. We’ll solve the radiation transport problem separately for
the two limits: τ0 � 1 (optically thin) and τ0 � 1 (optically thick).
We won’t attempt the intermediate case (τ0 ∼ 1) which is actually the
hardest to solve, since no simplifying approximation to the transport
can be made.

http://adsabs.harvard.edu/abs/2010MNRAS.407.1529H
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In general, this is a time-dependent problem – i.e., the temper-
ature and density of the envelope is evolving under the influence
of gravity4 and radiation feedback. Here we’ll make the stationarity 4 You can safely neglect the self-gravity

of the envelope; the gravity of the BH
dominates.

approximation – we take a snapshot in time in which the envelope
structure is held fixed and solve the steady state radiation transport
problem. We’ll check the validity of the assumption as we go.

I. Optically thin case

In the optically thin limit, most photons free-stream through the
envelope without interacting, and the radiation field can be approx-
imated by the value it would have in empty space5. We take the 5 It is true that a fraction ∼ τ0 of the

photons are absorbed in the envelope,
and so the radiation field is not exactly
the same as it would be in empty space,
but let’s not worry about that small
fraction.

opacity to be independent of wavelength.

a) Assume that the specific intensity from the surface of our spherical
source is given by Planck’s function at a temperature Ts. What is Ts?
At around what wavelengths does the BH radiate?

b) Write down the expression for the mean intensity, J(r), at all radii
outside the source in this optically thin case. Use it to solve for the
temperature profile, T(r) (in terms of Ts and Rin) of the dusty enve-
lope assuming that it is in radiative equilibrium. What is a charac-
teristic temperature of the envelope?6 At around what wavelengths 6 Most of the mass of the envelope is at

large radii, so you might evaluate T(r)
at, say, r ∼ Rout/2.

does the envelope radiate?

c) Let’s check that our use of the stationarity approximation is rea-
sonable. What is the characteristic time scale, tesc for photons to
escape the dusty envelope? How does this compare to the dynamical
timescale, tdyn (e.g., the time it would take to outer edge of the en-
velope to free-fall into the black hole)? Also check that the timescale,
teq, for the envelope to come into radiative equilibrium is short com-
pared to the dynamical timescale.7 Does it seem safe to assume the 7 As a rough test, it will suffice to

look at the value of either the cooling
or heating time for a characteristic
equilibrium temperature at, say, Rout/2.

envelope structure is fixed when solving this radiation transport
problem?

II. Optically thick case

Next consider the opposite limit, in which the envelope is optically
thick and the diffusion approximation applies. Continue to assume
the opacity is grey and purely absorptive. The diffusion equation in
spherical coordinates is

L(r) = −4πr2 c
3κρ

∂

∂r
u(r) (1)
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Assume that radiative equilibrium holds, in which case the luminos-
ity is constant with radius (and equal everywhere to LBH).

d) What is the expression for the characteristic time scale, tesc for
photons to escape the dusty envelope in this optically thick case? At
about what value of τ0 does our stationarity approximation become
questionable?

e) Solve the diffusion equation to determine the temperature pro-
file of the dusty envelope T(r) in this optically thick case. You’ll
need to specify a boundary condition – we’ll take it to be that the
temperature is zero at Rrout, the so-called "radiative zero" boundary
condition.8 8 This is not necessarily the best bound-

ary condition. A better one might
be that T(Rout) = Teff, where we
define the effective temperature by
LBH = 4πR2

outσsbT4
eff.

Bonus (optional): Consider the thin surface layer of the envelope
just below Rout, for which the plane parallel approximation applies.
Show that the temperature structure of this "atmosphere" follows
T4(τz) ∝ τz, where the optical depth coordinate, τz, is defined to be
zero at the Rout and increases inwards. You’ll notice that this is the
same sort of temperature dependence you derived by solving the
radiative transport equation for a plane-parallel stellar atmosphere in
problem 2e) of project set #1. 9 9 To get the exact same relation,

T4(τz) ∝ (τz + 2/3), you’ll have to
choose a smarter boundary condition
for the diffusion equation. The corre-
spondence here is not totally surprising,
as in the previous problem we assumed
that the angular dependence of the
radiation field was linear in µ, which is
the same sort of assumption that goes
into the diffusion approximation.

Bonus (optional): Our assumption of a constant density envelope is
a little unrealistic. However, you can easily solve the same diffusion
problem using a power-law density profile ρ(r) = ρ0(r/rin)

−ζ .

f) Plot the two temperature profiles you have derived (optically thin
and optically thick cases) in comparison to each other. For the op-
tically thick case, take τ0 = 100. For the optically thin case take
τ0 = 0.1. Note that dust is sublimated (destroyed) at temperatures
higher than ∼ 1500 K. Within about what radii do expect dust de-
struction to be important?

g): Consider the dusty gas at about the middle of the envelope (r =

Rout/2). How does the temperature you find for the optically thick
case compare to that of the optically thin case? Argue why the ratio
of these temperatures makes physical sense.

III. The emergent spectrum

Now that we have calculated the temperature structure of the en-
velope (in the limiting cases at least), we can model the emergent
spectrum and compare to observations.

h) Numerical: For the optically thin case, write a simple code to inte-
grate the wavelength dependent emissivity over the entire volume10 10 If you are not into programing, you

can find my simple python code on the
class website . At the least look it over
to see how this can be done.

https://ntc0.lbl.gov/astrogroup/index.php/Codes_for_radiative_processes
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and so calculate the infrared spectrum of the envelope (ignore the UV
emission from the BH). For the optically thick case, we can just ap-
proximate the spectrum by a blackbody at the temperature Teff. Plot
up the two spectra and compare.

Comment: Our model is too simple to apply to real obscured AGN,
for many reasons: (1) We have assumed a spherical geometry, when
in reality the envelope is probably a torus; (2) We have used a grey
opacity, when in reality the dust opacity varies with wavelength; (3)
We have assumed the density distribution is smooth and uniform,
while more detailed models suggest that it is highly clumpy. Nev-
ertheless, our analytic solutions may be useful for testing full blown
radiation transfer codes. They may also provide some intuition into
the results of detailed 3-D calculations (e.g., the optically thin so-
lution might best correspond to a more polar view, where the gas
column densities are lower, while the optically thick solution might
better correspond to an equatorial view).

2. A Solar Supernova

When disaster movies were all the rage several years ago,
a few (bad) scripts floated around about the sun going supernova.
None made it to the big screen. That does not mean that we should
consider ourselves safe. Therefore in this project we’ll develop an
analytic model of what such a catastrophe would look like. The for-
malism we derive is actually extremely useful in analyzing the light
curves of real supernovae and other astrophysical transients11. 11 We follow a simple version of the

more detailed analytic model for
supernova light curves derived in a
classic paper, Arnett 1980 .

In a real supernova, an energy of E ∼ 1051 ergs = 1B is deposited
(somehow) in the core of a star. This generates a shockwave of char-
acteristic velocity of v ∼

√
2E/M ∼ 10, 000 km s−1 which propagates

through the star, depositing about half of the energy in the form of
internal energy and the other half as kinetic energy of the ejected de-
bris12. Because it takes only a short time (t0 = R�/v ∼ 1 min) for 12 This nearly equal split of the energy

between internal and kinetic in the
post-shock region follows from the
hydrodynamics of strong (i.e., highly
supersonic) shocks.

the shockwave to traverse a sun-like star, we very rarely see the shock
emergence itself – what we do typically observe in the days and
weeks to follow is the thermal radiation diffusing out of the opaque,
expanding remnant.

We’ll approximate the remnant as a uniform density, isothermal,
expanding sphere of mass M, and initial radius R0. The remnant is a
hot plasma of ionized hydrogen, so the opacity is dominated (at most
wavelengths at least) by electron scattering.

a) What is (roughly) the optical depth (radially from the center to the

http://adsabs.harvard.edu/abs/1980ApJ...237..541A
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surface) of the remnant right after the sun has exploded (i.e., when
the remnant radius is still R0 = R�)?

b) Given the high optical depth, the radiation is (at least initially)
trapped in the remnant. Let’s assume that the gas and radiation are
well thermally coupled and that both have equilibrium distributions
of the same temperature. What is the characteristic temperature,
T0, of the remnant right after the sun has exploded with an energy
E = 1 B? Show that the radiation energy density exceeds the gas
energy density by quite a margin13. A supernova is basically a big 13 It’s easiest to do this in reverse – first

calculate T0 assuming that radiation
energy dominates, then verify that your
assumption is indeed true.

fireball of radiation, held in by the opacity of the gas.

Shortly after a the explosion, gravity and pressure forces become
negligible and the remnant reaches a phase of free expansion. The
radius of the remnant is then given by R(t) ' vt, where v ≈

√
2E/M

is the characteristic expansion velocity, R0 is the initial radius, and t
is time. In this case (known as homologous expansion) the volume of
the remnant increases with time as V(t) = V0(t/t0)

3, where the initial
volume is V0 = (4π/3)R3

0 and t0 = R0/v is the time it took for the
shock to explode the star.

As the remnant progressively expands, the internal energy of the
remnant will evolve according to the energy equation (i.e., the first
law of thermodynamics)

dE
dt

= −p
dV
dt
− L(t) (2)

where E(t) = u(t)×V(t) is the internal energy and p(t) the pressure
of the remnant (both dominated by radiation). L(t) is the luminos-
ity (ergs s−1) escaping the remnant (i.e., the supernova light curve)
which is what we want to figure out.

c) First, to orient ourselves, consider the case of adiabatic expansion
where L = 0 (i.e., no heat is entering or leaving the system). This is
appropriate for the earliest times ( <∼ 1 day) when the remnant is still
very opaque and very little radiation escapes. Show that temperature
of a homologous expanding, radiation dominated remnant cools
adiabatically as T(t) = T0(t/t0)

−1. In this adiabatic approximation,
about how hot do we expect the debris from the solar supernova to
be when it rains down on the earth14? 14 ouch.

To solve the non-adiabiatic case, let’s approximate the escaping lu-
minosity L(t) by the diffusion equation in spherical coordinates
(equation 1). To fully solve this equation we would need to specify
the radial structure of the remnant, i.e., ρ(r), ε(r). However, all we
really want is an order of magnitude estimate of L(t). In such cases,
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a useful trick for approximating the value of a spatial derivative is to
just to take a "one-zone" value and assume the quantity changes by
its full value over the characteristic length scale

∂u
∂r
≈ − u(t)

R(t)
(3)

d) Using this one-zone approximation, solve equation 2 for the en-
ergy density u(t) as a function of time. Then use the diffusion equa-
tion15 to derive an analytic formula for the supernova light curve, 15 You can continue to approximate

the spatial derivative by equation 3.
Note that the radius and density in this
equation also evolve with time. You
can replace them with r(t) = vt and
ρ(t) = M/V(t)

L(t). What are simple expressions (in terms of the basic physical
parameters E, R0, κ, and M) for the characteristic luminosity, Lsn, of
the supernova and the characteristic time scale, tsn, on which the
supernova luminosity declines?

Comment: The timescale tsn you have derived gives the effective
diffusion time in a (homologously) expanding medium, which is in
general useful for optically thick outflows. It is different than the
familiar static diffusion time because the density (and hence optical
depth) drop as the remnant expands, making it easier for photons
to escape. Note that the diffusion time in a static medium can be
written td ∼ κM/R0c. You have therefore shown that tsn ∝

√
tdte,

where te ≈ R0/v is the the characteristic expansion time of the
supernova remnant. In other words, the time it takes photons to
diffuse out of an expanding medium is given by the geometric mean
of td and te. For the sun, td ∼ 104 years, whereas te ≈ 1 minute.

e) Now we will blow up the sun. Dump an energy of E = 1 B into
our life-giving star and plot up your predicted light curve. Roughly
how bright (in solar luminosities) is our solar supernova and about
how long does it last?16 16 Of course, you will notice that the

remnant will overrun the earth long
before most of the radiation has had a
chance to escape. Thus, unfortunately,
we will never really be able to appreci-
ate the beauty of our solar supernova.

f) Using a rough estimate of the total energy radiated by the super-
nova (Esn ∼ Lsntsn) determine the percentage of the initial internal
energy of the remnant that winds up escaping as radiation. Where
does the rest of the internal energy go?

g) Assuming the luminosity is radiated approximately as a black-
body, at around what wavelengths does our solar supernova shine?

h) The most common type of supernovae (the Type IIP core collapse
events) have luminosities of around 1042 ergs s−1. How does this
compare to your predicted value?

Comment This discrepancy caused some confusion when the first
attempts to model Type II supernovae were made. The mystery was
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solved when people realized that the progenitors were not stars of so-
lar radii, but in fact red supergiants, with radii ∼ 100 larger than the
sun. From your equation, you will note that this predicts a brighter
light curve in rough agreement with observations.

Comment: Type Ia supernovae come from the thermonuclear explo-
sion of white dwarfs, which have much smaller radii then the sun.
And yet they are even brighter than most core collapse supernovae.
The reason is that the remnant is continually being heated by the de-
cay of radioactive isotopes produced in the explosion. In this case,
the first law of thermodynamics is

dE
dt

= −p
dV
dt
− L(t) + Ėrad (4)

where Ėrad is the energy per unit time being deposited by radioac-
tivity, which follows a roughly exponential decline in time. There
is no simple analytic expression for the light curve in this case, al-
though the equation is easily solved numerically. You can however
(Bonus) analytically solve the problem for the simplified scenario
where Erad = constant for t < trad and zero afterwards, where
trad ∼ 10 days is a typical radioactive decay time.

Bonus (optional) – Astro 201: The Real World

We Must Blow Up the Moon

While doing the last problem, you might have wondered: "why
would the sun ever go supernova?" Actually, there is no reason to
think it ever will. There is some cause for concern, though, that the
moon might blow up, perhaps even in our lifetime. If you don’t be-
lieve me, watch this report .

These visionaries (Bob and Dave) report that the spacecraft Ex-
ploder 1 will "carry enough dynamite and nuclear charges to blow
up the moon 50 times over." Given this information, estimate how
bright and long lasting the "lunar supernova" will be and advise Bob
and Dave on what it would actually look like from earth (assuming
america ever gets it together to pull this off).

http://www.youtube.com/watch?v=Csj7vMKy4EI
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